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Abstract 

Two neighbouring grains of the same phase with a 
lattice of hexagonal Bravais type are considered 
which have a three-dimensional lattice of symmetry 
translations in common, called the coincidence site 
lattice or CSL. The volume ratio of unit cells for the 
CSL and the original lattice is called the multiplicity 
2. The 2-hex theorem gives 2 in terms of four integral 
parameters that describe the axis and angle of the 
rotation connecting the hexagonal lattices of the two 
neighbouring grains and in terms of their axial ratio 
c/a. Two types of rotations generating CSL's may be 
distinguished, viz common rotations, which generate 
CSL's with the same 2; for every value of c/a, and 
specific rotations, which generate CSL's with a low 
value of 2 only for a few values of the axial ratio. 
The 2-hex theorem makes it possible to determine a 
lower and an upper bound for "~min, the minimum 
value of the multiplicity of specific rotations for a 
given axial ratio. The lower bound can serve to deter- 
mine systematically all specific rotations with c/a in 
a given interval and 2 not larger than some given 
value -~c. The bound is used to complete published 
tables. The upper bound is stronger than a similar 
bound given by Delavignette. 

I. Introduction 

In experimental investigations and computer simula- 
tions of the structure and properties of grain boun- 
daries, the results are frequently discussed with refer- 
ence to the special case of coincidence boundaries, 
where the two neighbouring grains have a three- 
dimensional lattice of symmetry translations in 
c o m m o n .  

Consider two neighbouring grains of the same 
phase with a primitive hexagonal lattice. One of the 
factors determining the structure and energy of the 
boundary between the two grains is the relative 
orientation of their lattices. It can be described by a 
rotation transforming the symmetry translations of 
lattice 1 into those of lattice 2. It has often been 
observed that low-energy boundaries have a large 
portion 1 / 2  of symmetry translations in common. 

A coordinate system defined by a basis of lattice 1 
is used to express the rotation by a 3 x 3 matrix R. 

Grimmer (1976) showed that the two lattices have 
symmetry translations in common if and only if R is 
rational and that 2, called the multiplicity, is the 
smallest integer such that 2 R  and 2 R  -~ are integral 
matrices. These results are valid for arbitrary sym- 
metry of lattice 1. They have been applied to lattices 
of hexagonal symmetry by Grimmer & Warrington 
(1983, 1985). 

Rotations by 180 ° around a lattice vector perpen- 
dicular to the sixfold axis and rotations around the 
sixfold axis such that 3~/2tan ((9/2) is rational are 
represented by rational matrices R that do not depend 
on c/a. It also follows that X is independent of c/a. 
Such rotations are called common rotations. If and 
only if (c/a) 2 is rational then there are also other 
rotations that give rise to rational matrices. They are 
called specific rotations because they are associated 
with specific values of c/a in contrast to the common 
rotations. The matrix and the multiplicity of these 
rotations depends on c/a. 

Bonnet, Cousineau & Warrington (1981) under- 
took to determine for seven elements with hexagonal 
structure all the specific rotations with 2-< 25 that 
can be relevant for the description of the structure of 
grain boundaries. Usually there are no values of c~ a 
that admit small values of 2 and lie within the uncer- 
tainty of the experimentally measured value of c/a. 
The above-mentioned authors considered therefore 
approximate coincidence of lattices with the experi- 
mental value of c/a. They restricted attention to the 
cases where a strain of one of the lattices by less than 
1% was sufficient to turn approximate into exact 
coincidence. Delavignette and co-workers undertook 
instead to determine all the specific rotations with 
low values of 2 for c/a values in certain intervals 
around the experimental value of c/a. They con- 
sidered the same seven elements, i.e. a-Be, a-Ti, a-Zr  
and Mg in Bleris, Nouet, Hag~ge & Delavignette 
(1982), Zn and Cd in Delavignette (1982) and 
graphite in Delavignette (1983). All these authors 
were aware that their methods did not guarantee 
completeness of their tables. 

Hag~ge & Nouet (1985) found rules that show the 
dependence of 2 on the axis and angle of the rotation 
and, in case of specific rotations, on the axial ratio 
of the lattice. However, their rules do not always give 

correctly. Grimmer & Warrington (1987) showed 
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how the rules have to be modified in order  to obtain 
a rigorous theorem. This theorem is presented here 
in a more elegant form under  the name of 2;-hex 
theorem. The theorem is applied to derive for each 
value of the axial ratio a lower bound  on the multi- 
plicity of specific rotations. This bound makes it pos- 
sible to determine the finite number  of axial ratios 
c/a that may give rise to specific rotations with 2; 
less than or equal to a given value 2;c. A computer  
program which determines the specific rotations for 
a given value of  c/a  and for ,X _ 2;c may then be used 
to determine these rotations systematically for all 
values of c /a  in a given interval. It has been used to 
complete the above-ment ioned tables of specific rota- 
tions. 

2. The X-hex theorem and its applications 

A basis of the hexagonal  lattice is given by two vectors 
el and e2 both of length a and perpendicular  to the 
sixfold symmetry  axis, and a vector e3 of length c and 
parallel to the sixfold axis. The angle between el and 
e2 is 120 ° . A rotation with axis [U, V, W] in this 
coordinate system and with angle (9 given by 

tan @/2 = { [ a 2 (  U 2 - U V +  V 2) q- 12 2 W2]/3c2m2} 1/2 

(1) 
is denoted by the hexagonal  quadruple  (m, U, V, W). 
The theorem of Gr immer  & Warrington (1987) can 
be written as: 

Theorem 1 ( X-hex theorem) 
The rotat ion (m, U, V, W) of the hexagonal  lattice 

with 

where 

and 

c21a2= t~lv, (2) 

gcd (m, U, V, W ) =  1" (3) 

gcd (/x, v ) =  1 (4) 

generates a CSL with multiplicity 

2; = FI  F2~ F2F3F4Fs, (5) 

where 

F =/x(3m2 + W 2) + v( U 2 -  UV+ V 2) (6) 

F~ = gcd (2, U, V, m + W) (7) 

F2 = gcd (3, U + V, W) (8) 

F3 = gcd ( 2 / F , ,  v, m + W) (9) 

F 4 = g c d ( v / F 3 , 2 W / ( F ~ F 2 ) , m +  W) (10) 

Fs=gcd(Ix,  3U/ (F~F2) , (U+ V)/F,) .  (11) 

Table 1. Lattice parameters of  seven elements with 
hexagonal structure [according to Eckerlin & Kandler 

(1971)] 

The space group is P63mc for graphite and P63/mmc in the other 
cases. 

a ¢ c / a  

a-Be 2.2866 3.5833 1.5671 
a-Ti 2-9511 4.6843 1.5873 
a-Zr  3.2321 5.1477 1.5927 
Mg 3.2094 5"2103 1.6234 
Zn 2.6647 4-9469 1-8565 
Cd 2.9794 5.6186 1.8858 

Graphite 2.4612 6-7079 2-7255 

The common rotations satisfy 

m = W = 0  or U = V = 0 ,  (12) 

the specific rotations do not satisfy (12). A lower 
bound  2;I.b. for the multiplici ty of specific rotations 
can be deduced from theorem 1 as shown in the 
Appendix.  The result is: 

Theorem 2 
The multiplicity of specific rotations of  a hexagonal  

lattice with axial ratio determined by p. and v cannot  
be smaller than 

1 "4~v /2  i f 3 l t , , 4 l  v 

2;,.b. = 2x/-/x v if3,~/z,  4~" v (13) 

[ ~/p.v otherwise.* 

Consider  as an example the specific rotations with 
2 ; < 2 1  and 1 .52<c /a<1"68 .  This range of c /a  is 
relevant for Be, Ti, Zr and Mg as shown in Table 1. 

The values o f /z  and v that  are possible according 
to (13) are listed in Table 2. 

Theorem 1 makes it possible to determine also an 
upper  bound  for the minimum value of  the multi- 
plicity of specific rotations: 

Lemma 1 
Put Ix' = / z / 3  if 31/x, tz' = / z  otherwise, and v' = v/4  

if 4] v, v ' =  v otherwise. Write P = / z ' v '  as a product  
P =pq of two integers p and q with ] p - q ]  as small 
as possible. Then 2;min < P + q. 

Applying lemma 1 to the 19 pairs /z, v listed in 
Table 2, one easily finds that  it gives an upper  bound  
2;,.b. for 2;min that  satisfies £u.b. = 2;rain in all 19 cases. 

Lemma 1 can be proved by considering the hexa- 
gonal quadruple  

I(0, ~,/~,o,0, ~/~o) 
~(0, ~/~,o,0, ~/2~o) 

(m, U, V, W)=l(V/Vo, tZ / ixo ,O,O)  
I 
[(v/2Vo, ~,/~,o, 0, 0) 

3~'/z, 4~" v 

3.~/z, 41 v 
if 

31/z, 4.~ v ' 
3[p.,4[ v 

* gcd (u, v . . . .  ) denotes the greatest common divisor of the * u Iv (uXv) states that the integer v is (is not) an integral 
integers u, v,.. . ,  multiple of the integer u ~ 0. 
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Table 2. The values of the axial ratio in the interval 
1.52<-c/a < - 1-68 for which specific rotations of the 
hexagonal lattice with ~, <-21 are possible according to 

theorem 2 

The lower bound  for the multiplicity Z lb  has been rounded  to the 
next-higher integer; the minimum value of  the multiplicity Zmm 
has been determined with a computer  program. The values o f  c/a 
are arranged in increasing order;  c2/a 2= ~/v. 

u J ~  a 2 c~ a Z~b .~o 
7 3 2.333 1"528 10 10 

19 8 2.375 1.541 13 21 
12 5 2.4 1.549 8 9 
29 12 2.417 1.555 19 32 
39 16 2.438 1"561 13 17 
27 11 2.455 1.567 18 20 
5 2 2.5 1"581 7 7 

33 13 2.538 1.593 21 24 
51 20 2.55 1.597 16 22 
18 7 2.571 1.604 12 13 
31 12 2-583 1.607 20 34 
13 5 2-6 1.612 17 18 
21 8 2.625 1"620 7 9 

8 3 2.667 1-633 10 10 
27 10 2.7 1.643 17 19 
30 11 2.727 1'651 19 21 
11 4 2.75 1"658 7 12 
14 5 2.8 1.673 17 17 
45 16 2.813 1.677 14 16 

where/Zo is a divisor of/x ' ,  v 0 a divisor of v'. From 
the 2-hex theorem it follows in all four cases that 
Z = ~"/Zo/Vo +/x'~'o//-I.0. The integers/Zo and v0 can be 
chosen such that p = ~'~'o//Xo and q = v'/Xo/Vo have 
the properties stated in lemma 1. 

In order to compute tables of the coincidence rota- 
tions for a given value of c/a one has to know the 
possible values of F/~,. The quantity F / 2  is always 
a divisor of 12/xv. This was stated first by Bleris et al. 
(1982) and proved rigorously by Grimmer & 
Warrington (1987). Theorem 1 makes it possible in 
many cases to give a stronger result: F / 2  is a divisor 
of 6 ~ ,  if v is even and a divisor of 3/~v if v is a 
multiple of 4. 

The connection between rotations that describe the 
same relative orientation of two hexagonal lattices 
has been discussed before, e.g. by Grimmer & 
Warrington (1987). A unique representative is chosen 
in each class of equivalent rotations if one requires 
the four parameters m, U, V, W to satisfy 

U - 2 V - 0 ,  W_>0 (14) 

m>-(t,/4p,)l/2U, m>-(v/12tx)l/2(2U - V), 

m -> (2/31/2 + 1 ) W (15) 

W<-(v/4tx)~/2(U-2V) if m=(v/41x)' /2U (16) 

W<-(3v/4tx)'/2V if m=(v/12tz)~/2(2U- V) (17) 

U>__(2+3~/2)V i fm=(2/3~/2+l)W.  (18) 

The representative is a rotation with minimum angle 
and axis in a standard stereographic triangle (SST) 
defined by (14). Table 3 gives the equivalence classes 
of specific rotations with 2-<21 and 1.52<_c/a<_ 
1.68. The number of different rotations in the class 
is 12w. The axes of 180 ° rotations are given by their 
Weber indices [uv. w] (cf Frank, 1965), not by their 
hexagonal components [ U' V' W'] - [2u + v u - v w]; 
u >- v -> 0, w -> 0 for axes in the SST. The planes per- 
pendicular to these axes, called symmetry planes, are 
given by their Miller-Bravais indices ( h k . l ) -  
(3 ~,u 3 vv. 2/xw). 

The equivalence classes of common rotations with 
2-< 60 are listed in Table 4. The number of different 
rotations in each of these classes is 24, i.e. to = 2. The 
Miller-Bravais indices of the symmetry plane 
coincide with the Weber indices of the axis of the 
corresponding 180 ° rotation. 

The common rotations of hexagonal lattices have 
been known for several years (Warrington, 1975; 
Bonnet et al., 1981; Bleris et al., 1982). The present 
author has computed the specific rotations for 

1.50 < - c / a < - 1 . 7 0  and Z<-25 

1.82<_c/a<-1.92 and 2<-35 

2.65<-c/a<-2.82 and Z<-35. 

A comparison with published tables showed that 
Table 1 in Bleris et al. (1982) gives all solutions with 
1.545< c/a < 1.675 and 2 <-20. One value of c/a is 
lacking in Delavignette (1982) and three in Delavi- 
gnette (1983) as shown in Tables 5 and 6. The reason 
some solutions were missed becomes apparent from 
Table 2 in Delavignette (1982), where a rule for the 
value of Zr~in expressed in terms of ~ and v is given. 
The value 2o  obtained from that rule is either equal 
to or higher than the upper bound Zub obtained from 
lemma 1, i.e. 

"a~l.b. "~ "~min ~ "~u.b. ~ "~D" (19) 

Consider as an example c/a = 1.880; i.e.I.t =99, z, = 
28, where 2 o = 9 9 / 3 + 2 8 / 4 = 4 0  whereas Zmi,= 
2ub = 3 3 / 3 + 7  ×3 =32. 

The article by Bonnet et al. (1981) contains all 
solutions with 2 <-25 and 1.57< c/a < 1.64, 1.83< 
c/a < 1.91 and 2.69 < c/a < 2.77 with the exceptions 
of c/a = 1.620, 2 = 21a (see Table 3), c/a = 1.852, 
Z = 1 8  and c/a=1.871, 2 = 2 1 b  (see Table3 in 
Delavignette, 1982). The present author expects that 
the first solution should appear for Mg, the second 
for Zn and the third for Zn and Cd according to the 
criteria used by Bonnet et al. (1981). 

3. Concluding remarks 

The 2-hex theorem makes it possible to determine a 
lower and an upper bound for 2mi., the minimum 
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Axial 
ratio 

1.528 

1.541 

1-549 

1.561 

1.567 

1.581 

1.604 

1.612 

1.620 

1"633 

1.643 

1.651 

1.658 

1.673 

1.677 

Table 3. The equivalence classes of  specific rotations with ,Y,-<21 and 1 .52 -  < c/ a -< 1.68 

~ 0 (°) m U V W 

'10 6 66.42 1 2 1 0 
16 6 82-82 3 7 0 0 

,19 6 74.74 6 14 7 0 

21 6 35.95 2 2 1 0 

I 
9 6 83.62 5 12 0 0 

12 6 48.19 5 6 0 0 
16 6 75.52 5 12 6 0 
17 6 65"68 1 2 1 0 
19 6 54.62 5 8 4 0 
21a 6 25.21 5 3 0 0 

~21b  6 58.41 2 3 0 0 

17 6 58.03 2 3 0 0 

20 6 84.26 11 27 0 0 

7 6 64.62 1 2 1 0 
l l a  6 35.10 2 2 1 0 
l i b  6 84"78 2 5 0 0 
13a 6 57.42 2 3 0 0 
13b 6 76-66 4 10 5 0 
17a 6 40.12 1 1 0 0 
17b 12 79.84 2 5 1 0 
19a 12 65.10 3 5 0 1 
19b 6 86-98 2 6 3 0 

13 6 85.59 7 18 0 0 
17 6 49.68 7 9 0 0 

18 6 63.61 1 2 1 0 

9 6 56.25 2 3 0 0 
13 6 85.59 2 6 3 0 
15a 6 29.93 4 3 0 0 
15b 6 86-18 8 21 0 0 
17 6 49.68 4 6 3 0 
21a 12 70-53 4 9 3 0 

~21b  12 73.40 6 14 7 2 

10 6 78.46 3 8 4 0 
11 6 62.96 1 2 1 0 
14 6 44.42 3 4 2 0 
17 6 86"63 3 8 0 0 
18 6 70.53 1 2 0 0 

19 6 86.98 10 27 0 0 
21 6 64-62 5 9 0 0 

21 6 87.27 11 30 0 0 

12 6 33.56 2 2 1 0 
14 6 55.15 2 3 0 0 
15 6 62-18 1 2 1 0 
18 12 77.16 2 5 1 0 
20 6 84.26 2 6 3 0 

17 6 79.84 5 14 7 0 
19 6 61.73 1 2 1 0 

16 6 75.52 4 9 0 0 
17 6 65.68 8 15 0 0 
19 6 54.62 2 3 0 0 

Representative Axes in the SST Symmetry planes 
of 180 ° rotations in the SST 

1 1. 3 
7 0 .  9 
7 7 . 18  

1 1.  6 

4 0.  5 
2 0 .  5 
2 2.  5 
1 1. 3 
4 4 . 15  
1 0 .  5 
1 0 .  2 

1 0 .  2 

9 0 .11 

1 1.  3 
1 1 .  6 
5 0 . 6  
1 0 .  2 
5 5 . 12  
1 0.  3 
4 1. 6 

7 7.  9 
1 0 .  1 
2 2.  3 

19 19.12 

1 0 .  1 
2 0 1 
2 2 3 
4 4 5 
1 1 1 
4 0 1 
8 0 5 

13 0.  8 

1 0 .  1 

5 5. 6 
5 5. 3 
1 0 .  1 
5 0.  3 
2 2.  3 
5 0 .  2 

3 3 . 1 4  
1 0 .  2 
1 1. 4 

2 2 . 1 9  

1 0 .  2 
1 0.  4 
1 1 .  4 
5 5 . 2 4  
1 1.  6 
1 0 .  8 
5 0 . 1 6  

4 0 .13  

1 0 .  2 

1 1. 5 
1 1 10 
1 0 2 
3 0 10 
1 1 4 
1 0 5 
4 1 10 

1 1 .  2 
9 0 . 1 4  
3 3.  7 

1 1. 1 

5 0.  8 
5 0 4 
5 5 12 
1 1 2 
5 5 8 
5 0 2 
1 0 1 

1 0 .  1 

11 0 .18  

1 1.  2 
1 1 .  1 
3 0.  5 
1 0 .  1 
2 2.  5 
3 0.  2 

4 1 . 3  4 1 . 5  
1 1. 2 5 5. 9 3 3 . 1 0  1 1. 3 

6 0 .  7 1 0 .  1 1 0.  2 7 0 . 1 2  
3 0.  7 2 0.  1 1 0 .  4 7 0.  6 

1 1. 3 13 13.15 5 5 . 26  1 1. 2 

1 0 .  2 7 0 .  4 2 0 .  7 1 0.  1 
1 1. 2 7 7 . 12  2 2.  7 1 1. 3 
1 0 .  4 7 0 .  2 1 0.  7 2 0.  1 
7 0.  8 1 0.  1 1 0.  2 4 0.  7 
1 1.  4 7 7 .  6 1 1 .  7 2 2. 3 
2 1 . 4  2 1 . 7  

2 1 . 2  4 2 . 7  

4 4.  9 2 2.  3 1 1. 4 3 3.  8 
1 1. 3 8 8.  9 3 3 . 1 6  1 1. 2 
2 2.  9 4 4 .  3 1 1. 8 3 3.  4 
8 0 .  9 1 0 .  1 1 0.  2 9 0 . ! 6  
2 0.  3 4 0.  3 3 0.  8 3 0.  4 

9 0 . 1 0  1 0.  1 1 0.  2 5 0.  9 
3 0 .  5 3 0.  2 1 0 .  3 5 0 .  6 

10 0 .11 1 0.  1 1 0.  2 11 0 . 2 0  

1. 1. 6 11 11. 6 1 1 .11 1 1. 1 
1 0 .  2 11 0 .  6 3 0 . 1 1  1 0 .  1 
1 1 .  3 11 1 1 . 1 2  2 2 . 1 1  1 1.  2 
4 1. 6 4 1.11 
1 1. 2 11 11.18 3 3 .11  1 1. 3 

7 7 .15  2 2.  3 1 1. 4 5 5 . 1 4  
1 1. 3 14 14.15 5 5 . 28  1 1. 2 

3 0 .  4 5 0 .  4 2 0.  5 2 0.  3 
5 0.  8 3 0.  2 1 0.  3 4 0.  5 
1 0 .  2 15 0 .  8 4 0 . 1 5  1 0 .  1 

value of the multiplicity of specific rotations for a this relation is lacking, however. It would simplify 
given axial ratio c2/a 2 =/z/1.,. Complete tables of the computation of specific rotations with Z -< Zc and 
specific rotations with c~ a in a given interval and Z c~ a in a given interval by eliminating straightaway 
not larger than some given value Zc can be obtained the pairs/z, v with ZLb.--< ~c < 2u.b.. 
by considering all pairs/z, l, for which 21.b. -< Zc. This 
result has been used to complete published tables of Stimulating discussions with Drs R. B~nnet and 
specific rotations. No cases are known to the author S. Lartigue and Professor L. Priester are gratefully 
where Zu.b.= 2min does not hold, a general proof of acknowledged. 
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Table 4. The equivalence classes of common rotations 
with 2 <_ 60 

The hexagonal quadruples of the representatives have the form 
(mOO W) 

R e p r e s e n t a t i v e  
2: O (o) m w 
7 21 "79 3 1 

13 27.80 7 3 
19 13-17 5 1 
31 17"90 11 3 
37 9.43 7 1 
43 15"18 13 3 
49 16-43 4 1 

Axes  in the  S S T  
o f  180 ° r o t a t i o n s  

2 1 . 0  4 1  0 
5 2 . 0  3 1 0  
3 2 . 0  7 1 0  
7 4 . 0  5 1 0  
4 3 . 0  101  0 
8 5 . 0  6 1  0 
5 3 . 0  11 2 0 

Table 5. Additional values of the axial ratio in the 
intervals considered by Delavignette (1982, 1983) for 
which specific rotations of the hexagonal lattice exist 

with 2 <_ 35 

T h e  l o w e r  b o u n d  for  the  m u l t i p l i c i t y  "~l.b. has  b e e n  r o u n d e d  to t he  
n e x t - h i g h e r  in tege r .  

I,~ l~ c2 /  a 2 c /  a "~.b. "~rnin = "~u.b. 
99 28 3"536 1"880 27 32 

117 16 7"313 2.704 22 25 
91 12 7-583 2-754 34 34 

153 20 7-65 2-766 28 32 

Table 6. Additional equivalence classes of specific coincidence rotations with 2 <_ 35 and axial ratios in the 
ranges considered by Delavignette (1982, 1983) 

E a c h  o f  t he se  five c lasses  c o n t a i n s  72 r o t a t i o n s  (i.e. w = 6). 

A x i a l  R e p r e s e n t a t i v e  A x e s  in the  S S T  S y m m e t r y  p l a n e s  
r a t i o  Z O (°) m U V W o f  180 ° r o t a t i o n s  in the  S S T  

1-880 32 71-79 14 33 0 0 11 0 . 1 4  3 0.  2 1 0.  3 7 0.11 

2.704 ~25 87-71 2 9 0 0 3 0.  2 13 0.  8 4 0 .13  1 0.  3 
t 32 51-32 4 9 0 0 3 0.  4 13 0.  4 2 0 .13  2 0.  3 

2.754 34 76.39 6 26 13 0 13 13.18 7 7. 6 1 1. 7 3 3 .13  

2"766 32 86.42 2 9 0 0 3 0. 2 17 0 .10  5 0 .17  1 0.  3 

APPENDIX 

A lower bound for the multiplicity of specific rotations 

A.1. Introduction 

Equivalent rotations create CSL's with the same 
multiplicity. Equations (14), (15) show therefore that 
it suffices to give a lower bound for the multiplicity 
of rotations that satisfy 

U>-2V>-O, W>-O, m>-(2/3~n+l)W. (20) 

Such rotations are specific if 

m > 0  and U > 0 .  (21) 

It follows from the 2-hex theorem that 

F>_Fo=3txm2+(3/4)vU 2 if W = 0 ,  (22) 

F>-Fw =4(2+3w2)lzW2+(3/4)vU2 if W > 0 .  

(23) 

Define 

20 = Fo/mU and ~w = Fw/WU. (24) 

It follows that 

~o = 3tx(m/ U)+ 3v( Ul m ) = f ( m / U ) .  

The value of x = m~ U for which f ( x )  becomes a 
minimum is obtained by setting 

df 
- -  0 ,  

dx 

Le.  

d ( 3 : )  3. 
dx 3/zx+ =3/x 4x 2 0 ~ x  

This gives 

20 -> 3 (/x v) 1/2. (25) 

Similarly it is found that 

Xw -> 213/xv(2 + 3w2)]w2 > 6(/zu) w2. (26) 

A.2. Derivation of the bound 

The a-hex theorem shows that G = F / 2  has the form 

G 2 = F, F2F3F4Fs. (27) 

The notation P lq will be used to state that the integer 
q is an integral multiple of the integer p ~ 0; p,~ q 
states that q is not an integral multiple of p. 

Case ( a ) 
FI = 2 =:> F 3 = 1, m and W odd. 

(1) F2=3  =:> F4=gcd (v, W/3, m+ W)<_ W/3, 
F5 = gcd (/x, U/2, V/2) <- U/2 ~ G <- 2 WU 

2 >- 2w /2  > 3 ( / / , / , ' )  1/2. 

(2) F 2 = l  ~ F4=gcd (v, W,m)<_ W, 
Fs = gcd (tx, 3 U/2, ( U + V)/2)-<. 3 U/4 
:=> G <- 3 WU => 2 >_ 2w/3  > 2(/zv) ~/2. 

Case ( b ) 
FI=  1, F2=3  ~ F5 =gcd  (/x, U, V)_< U. 
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If 3,~/ ,  then F5 < - U/2. Proof: 31 U+ V because 
F2=3.  If V = 0  then 31U and F5 < - U/3; if V #  0 then 
F5 < - U/2 because of (14). All the following lower 
limits on 1; can therefore be multiplied by 2 if 3 ,~/x. 

(1) F 3 = l ~ 2 X v o r 2 X m + W  
Fa=gcd(v ,  W/3, m+ W). 

(1.1) W = 0 = > F a < - m ~ G < - 3 m U  
==> ~v >_ Xo/3 = (/zv) '/2. 

(1.2) W # O ~  F4 <- W/3 ~ G <- WU 
::g' 1; --> 2 w  > 6( /zv)  1/2. 

(2) F3=2  =:> F4=gcd(v /2 ,2W/3,  m+ W). 
(2.1) W=O, 4 [ v ~  F 4 < - m ~ G < - 6 m U  

1; ~ ( / ,V)1/2/2.  

(2.2) W=O,  4 . ~ v ~ F 4 < - m / 2 ~ G < - 3 m U  
=> 1; _ (/.v) ~/2. 

(2.3) W ¢ O  ::=> F4<-2W/3 ::=> G<-4WU 
::=> .Y, > 3(i.,v)'/2/2. 

Case ( c) 
F I = F 2 = I  

(1) F3 = 
(1.1) 

(2) 

F5 =gcd  (/x, 3 U, U+ V)<-3U/2. 
1 ~ F4= gcd (v, 2W, m +  W). 

W = 0  =:> Fa<-m ~ G<-3mU/2 
1; _> 2(/, v) 1/2. 

(1.2) W # O ~  F 4 < - 2 W ~ G < - 3 W U  
:=> X > 2(/zv) 1/2. 

F 3 = 2  :=> F4= gcd (v/2,  2W, m +  W). 
(2.1) W=O, 4 I v ~  F 4 < - m ~ G < - 3 m U  

2 >- (p.v) ~/2. 
(2.2) W=O, 4 X v ~  F4 < - m / 2 ~ G  

<_ 3mU/2 ~ .,Y. -> 2(/,v) ~/2. 

(2.3) W#O,  4 [ v = > F 4 < - 2 W ~ G < - 6 W U  
I; > (/xv) 1/2. 

(2.4) W # O ,  4 + v ~ F 4  < - W ~ G < - 3 W U  
~ > 2(/x/.,) 1/2. 

Summary 

It follows from cases (a)-(c) that 

((Ixv)1/2/2 if3]/x, 41 v 

~--> ]2( /z / . ' )  1/2 if 3,~ p., 4.~ v 

[ ( / , v )  l/z otherwise. 
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Electron Inelastic Plasmon Scattering and its Resonance Propagation 
at Crystal Surfaces in RHEED 
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Abstract 

The modified multislice theory [Wang (1989). Acta 
Cryst. A45, 193-199] has been employed to calculate 
the electron reflection intensity with and without con- 
sidering the plasmon diffuse scattering in the 
geometry of reflection high-energy electron diffrac- 
tion (RHEED).  It has been shown that the inelastic 
scattering can greatly enhance the reflectance of a 
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surface, depending critically on the incident condi- 
tions of the electrons. At some incidences, the in- 
elastic resonance reflection is enhanced, which 
is considered as the 'true' surface resonance state. 
This happens within a very narrow angular range 
(<1 mrad). For 'true' resonance states, the inelastic 
intensity is much stronger than for other conditions 
as shown both theoretically and experimentally. The 
enhancement of the reflection intensity may not be 
the proper criterion for identifying the 'true' surface 
resonance. Besides the surface plasmon peaks, an 
'extra' peak, located at 4-5 eV, is observed in the 
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